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Abstract

Purpose – To provide some new and additional data for the design of a triple stack cold plate.

Design/methodology/approach – A detailed finite element formulation for the triple stack cold
plate with and without heat losses from the top and bottom surfaces of the stack is presented to
determine its performance under steady as well as unsteady conditions. The effects of the number
of unit cells, different heat losses as well as the governing dimensionless parameter, M (involving
stack dimension, properties of the stack material and the variation in the heat transfer coefficient)
on the performance of the stack are investigated. The detailed formulation of the asymptotic
waveform evaluation scheme is also given and applied to determine the transient performance of
the stack.

Findings – The methods of analysis described are quite simple to use to determine the steady and
unsteady performance of the triple stack cold plate under different operating conditions. The heat
losses from the top and bottom surfaces of the stack do affect the maximum temperature of the stack
and in such case, the assembled stack should be analysed.

Research limitations/implications – The analysis is limited to an incompressible fluid. The effect
of varying mass flow rate of the fluid in the stack passages is also not considered.

Practical implications – New and additional generated data will be helpful in the design of cold
plates used in the cooling of electronic components.

Originality/value – The asymptotic waveform evaluation scheme is used for the first time to
determine the transient performance of the triple stack cold plate under different operating conditions.
The results thus obtained are compared well with those found from the finite element analysis (FEM),
but the computational effort and time required in the analysis is much small as compared to those
required in the FEM analysis.
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Nomenclature

A ¼ cross sectional area perpendicular to
the direction of heat conduction, m2

c ¼ specific heat of the fin material, J/kg 8C
h ¼ heat transfer coefficient, W/m2 K
k ¼ thermal conductivity of the fin

material, W/m 8C
M ¼ hPB 2=kA; a non-dimensional stack

parameter

P ¼ perimeter of the surface where
convection takes place, m

~Q ¼ Heat loading on the right exterior
plate/Heat loading on the left exterior
plate ¼ QTR/QTL

T ¼ temperature of the fin at a given
location, 8C

T1 ¼ ambient temperature, 8C
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Introduction
Electronic components mounted on the printed circuit board are cooled using cold plates
which consist of repeated arrays of rectangular fins, attached between two exterior
plates. Fluid passes through the spaces between the fins to help increase the rate of
heat transfer from the fin. A triple stack cold plate has two splitter plates between the
two exterior plates. Kern and Kraus (1972) analysed the single stack and double
stack cold plates with heat input on one side, as well as on both sides of the cold plates.
Kraus et al. (1978), for arrays of single fin, showed that the condition of heat flow and
excess temperature at any point on a fin are influenced by similar conditions at the
fin base.

A limited steady-state analysis of a double stack cold plate, as shown in Figure 1,
was reported by Pieper and Kraus (1995) and Kraus and Pieper (1995). Their analyses
were valid only if the imbalance in heat loading at the cover plate exterior surfaces
was sufficient to generate an adiabatic point somewhere along either the left hand fin
or the right hand fin in the structure. The range in the imbalance in thermal loading
for which such an adiabatic point did not exist was established to be greater than
zero. Pieper and Kraus (1998) extended their analysis for a double stack, forced cooled
cold plates to cover all regimes of asymmetric loading, including the previously
ignored operating regime in which neither of the fins connecting exterior surfaces to
splitter plates had an adiabatic point. They considered the entire structure to be
composed of a large number of repeating sections called the unit cells as identified
within the box shown in Figure 1. End effects were ignored for large number of such
repeating sections. Identical thermal conditions were implied on each cell of the
structure. The overall performance of the double stack cold plate was approximately
predicted by appropriately scaling the performance analysis of the basic repeating
section. They also showed that, disregarding fluid movement considerations, the
double stack cold plate could keep the electronic package cooler than the
corresponding single stack design having the same volume. However, their results
were limited to the given stack dimensions only.

The objective of this paper is to present the steady-state performance of a triple
stack cold plate with heat losses from the top and bottom surfaces of the stack with
varying number of unit cells (NUC) using finite element method. Further, a fast
transient asymptotic waveform evaluation (AWE) method is applied to determine the
transient behaviour of the triple stack cold plate and the results thus obtained are
compared with those obtained by the finite element method.

The governing equation and finite element formulation
A stack is considered as a combination of fins connected together. A simple
one-dimensional fin theory is then applied to the stack under investigation (Quadir et al.
2002).

t ¼ time, s
X ¼ x/B, where B is the reference

dimension, m
x ¼ distance measured from the base of a

fin, m
r ¼ density of the fin material, kg/m3

t ¼ kt/rcB 2, a non-dimensional time

u ¼ kA (T 2 T1)/QTLB, anon-dimensional
temperature

ui, uj ¼ dimensionless temperature at nodes i
and j, respectively

uit, ujt ¼ temperature at a node for two time
intervals represented by it and jt
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The governing equation under a transient condition for a one-dimensional fin with
conduction and forced convection is given as follows:

kA
›2T

›x 2
2 hPðT 2 T1Þ ¼ crA

›T

›t
ð1Þ

As a generalisation, using the dimensionless parameters ~Q; u, X, M and t, as defined in
the nomenclature, equation (1) becomes:

›2u

›X 2
2Mu ¼

›u

›t
ð2Þ

M is the governing parameter in the analysis that takes into account the variation in h
(free convection, mixed convection and forced convection including the developing
flow), the variation in k (different fin materials), geometric factor (A/P ratio of the flow
passage) and finally, the distance between the exterior plates. Thus, the introduction of
the parameter M does not restrict the present analysis to a particular set of geometry.

The variation of temperature along the fin is assumed to be linear as:

u ¼ ½N �{u} ð3Þ

where [N ] is the shape function and given by:

½N � ¼ 1 2 X X
� �

; ð4Þ

and

Figure 1.
A double stack cold plate
with unit cell marked

HFF
15,1

98



{u} ¼
ui

uj

( )
ð5Þ

By using Galerkin’s method, as explained in Segerlind (1984) and Lewis et al. (1996),
the finite element formulation of equation (2) is obtained as:

½C�
du

dt

� �
þ ½K�{u} ¼ 0 ð6Þ

where

½C� ¼
1

6

2 1

1 2

" #
ð7Þ

½K� ¼
1 21

21 1

" #
þ

M

6

2 1

1 2

" #
ð8Þ

Equation (6) is a transient heat conduction equation. To solve this equation using FEM,
the temperature variation with time is assumed to be linear and is represented as:

{u} ¼ Nit{uit} þ Njt{ujt} ð9Þ

where

Nit ¼ 1 2
t

Dt
and Njt ¼

t

Dt
ð10Þ

where Dt is the non-dimensional time step.
Galerkin’s method is applied in the time domain here, to obtain the time stepping

scheme as:

½C�

2Dt
þ

½K�

6

� �
{ujt} ¼

½C�

2Dt
2

½K�

3

� �
{uit} ð11Þ

Equation (11) is used to find the temperature distribution {ujt} at a new time step from
the known temperature distribution {uit}. The iteration stops when the temperature
between the two time steps does not change by more than 1.0£ 1026. The above
theory can be applied to different cases, e.g. fin array, single stack cold plate,
double stack cold plate and triple stack cold plate. The assembly of the element
matrices for each case is to be carried out similar to that as explained in Segerlind
(1984).

AWE formulation
Laplace transform of equation (6) is given as follows:

½C�{suðsÞ2 u0} þ ½K�{uðsÞ} ¼ {b} ð12Þ

where u0 refers to the initial condition of the system, and {b} the load vector.
Subsequent steps treat the boundary conditions and initial conditions in two

separate solutions, which are then combined to give the total solution. This is
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equivalent to solving a control system, where the response of the system is represented
by a combination of two independent responses, namely zero state response (ZSR) and
zero input response (ZIR).

The ZSR is evaluated by treating the initial condition of the system as zero. In terms
of the present analysis, this means the initial temperature of the cold plate is equal to
the ambient temperature. Therefore, equation (12) is simplified as follows.

ðs½C� þ ½K�Þ{uðsÞ} ¼ {b} ð13Þ

Next, the Taylor series expansion of u(s) about s ¼ 0 is evaluated in order to obtain the
moments Mn which are defined in the following equation.

uðsÞ ¼ uð0Þ þ
u 0ð0Þs

1!
þ

u 00ð0Þs 2

2!
þ

u000ð0Þs 3

3!
þ · · · ¼

X1
n¼0

Mns
n ð14Þ

where

Mn ¼
unð0Þ

n!
:

Also, when s ¼ 0; equation (13) becomes ½K�{uð0Þ} ¼ {b}; and equation (14) becomes
{uð0Þ} ¼ M 0: These two equations are combined to become M 0 ¼ ½K�21{b}: Thus,
the first moment M0 for ZSR is obtained.

In order to evaluate the second moment M1, equation (12) is differentiated once with
respect to s, then setting s ¼ 0; we obtain ½K�{u 0ð0Þ} þ ½C�{uð0Þ} ¼ 0: Also, from
equation (14), when n ¼ 1; M 1 ¼ {u 0ð0Þ}: Thus, the second moment is obtained as
½K�M 1 ¼ 2½C�M 0: Based on the same argument, the nth moment Mn can be obtained
from a general formula: ½K�Mn ¼ 2½C�Mn21:

The ZIR is evaluated by treating the forcing function of the system as zero. In terms
of the present analysis, this means the heat loading of the cold plate is equal to zero.
Therefore, equation (12) is simplified as follows.

ðs½C� þ ½K�Þ{uðsÞ} 2 ½C�{u0} ¼ 0 ð15Þ

Next, the Taylor series expansion of u(s) about s ¼ 0 for ZIR is evaluated to obtain the
moments Mn as defined in equation (14). Also, when s ¼ 0; equation (15) becomes
½K�{uð0Þ} ¼ ½C�{u0}; and equation (14) becomes {uð0Þ} ¼ M 0: These two equations
are combined to get M 0 ¼ ½K�21½C�{u0}: Thus, the first moment M0 for ZIR is
obtained.

In order to evaluate the second moment M1, equation (15) is differentiated once with
respect to s, then setting s ¼ 0; we obtain ½K�{u 0ð0Þ} þ ½C�{uð0Þ} ¼ 0: Also, from
equation (14), when n ¼ 1; M 1 ¼ {u 0ð0Þ}: Thus, the second moment is obtained as
½K�M 1 ¼ 2½C�M 0: Based on the same argument, the nth moment Mn can be obtained
from a general formula: ½K�Mn ¼ 2½C�Mn21:Mn is the nth moment of all nodes. Since
the response of only one node is of our interest, we extract the moments of that node for
further calculations, instead of working with the moments of all nodes. Let mn be the
ith entry in vector Mn. mn represents the moments generated from node i (the node of
our interest). Thus, an equation similar to equation (14) can be written to represent the
response of one particular node of interest, as follows:
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uðsÞ ¼ m0 þm1sþm1s
2 þ · · · þm2q21s

2q21 ¼
X2q21

n¼0

mns
n ð16Þ

Equation (16) must be evaluated twice for ZIR and ZSR separately. In equation (16), the
series is finite from 0 to the (2q21)th moment. AWE matches these moments to a
reduced order model by using Padé approximation up to q number of moments only,
which is strictly a proper rational function, as given by:

uðsÞ ¼
b0 þ b1sþ b2s

2 þ · · · þ bq21s
q21

1 þ a1sþ a2s 2 þ · · · þ aqsq
ð17Þ

Therefore, equations (16) and (17) are combined to obtain:

m0 þm1sþm1s
2 þ · · · þm2q21s

2q21 ¼
b0 þ b1sþ b2s

2 þ · · · þ bq21s
q21

1 þ a1sþ a2s 2 þ · · · þ aqsq
ð18Þ

After cross-multiplication, the coefficients of s on the left and right hand side are
equated. Thus, a set of linear algebraic equations yields :

m0aq þm1aq21 þm2aq22 þ · · · þmq21a1 þmq ¼ 0

m1aq þm2aq21 þm3aq22 þ · · · þmqa1 þmqþ1 ¼ 0

m2aq þm3aq21 þm4aq22 þ · · · þmqþ1a1 þmqþ2 ¼ 0

..

.

mq21aq þmqaq21 þmqþ1aq22 þ · · · þm2q22a1 þm2q21 ¼ 0

ð19Þ

Equation (19) can be written in the following matrix form:

m0 m1 m2 . . . mq21

m1 m2 m3 . . . mq

m2 m3 m4 . . . mqþ1

..

. ..
. ..

.
· · · ..

.

mq21 mq mqþ1 . . . m2q22

2
6666666664

3
7777777775

aq

aq21

aq22

..

.

a1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ 2

mq

mqþ1

mqþ2

..

.

m2q21

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð20Þ

Equation (20) is solved for a s, which are then used to find the roots p by the following
equation:

Xq
i¼0

aip
i ¼ 0; where a0 ¼ 1 ð21Þ

The roots are then assembled in the following matrix in order to find the residues k.
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p21
1 p21

2 p21
3 . . . p21

q

p22
1 p22

2 p22
3 . . . p22

q

p23
1 p23

2 p23
3 . . . p23

q

..

. ..
. ..

.
· · · ..

.

p2q
1 p2q

2 p2q
3 . . . p2q

q

2
66666666664

3
77777777775

k1

k2

k3

..

.

kq

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ 2

m0

m1

m2

..

.

mq21

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð22Þ

The poles and residues are then assembled in equation (23), which represents the
reduced order approximation. I(s) depends on the nature of the input, e.g. it is equal to 1
for a step input.

uðsÞ ¼
Xq
n¼1

kn

s2 pn
I ðsÞ: ð23Þ

For each response, the corresponding poles and residues are evaluated and then the
total response is evaluated by simply adding the solutions of both ZSR and ZIR for a
particular nature of the input. Equation (24) shows the total response in time domain
for a step input after performing the inverse Laplace transform where the first
summation term represents the solution for ZSR, while the second represents the
solution for ZIR.

uðtÞ ¼
Xq
i¼0

ki
pi
ðexpðpitÞ2 1Þ þ

Xq
i¼0

ki expðpitÞ: ð24Þ

Validation
The present approach was applied to the case of a rectangular fin array for which
solutions are given by Mikhailov and Ozisik (1981). The case of a fin array is taken
here because cold plates consist of repeated arrays of rectangular fins between two
exterior plates. It is to be noted that Mikhailov and Ozisik (1981) modelled a fin array
using a linear combination of two fundamental solutions to the governing differential
equation for the one-dimensional steady-state problem. However, in the present
analysis each fin can be considered to have more than one element. Thus, the present
finite element analysis is more general and can be used for longer fins as well.
The results are reported by Beh et al. (2001) and found to be in good agreement with
those of Mikhailov and Ozisik (1981). This exercise showed that the present approach
is valid for the analysis of fin arrays.

The present analysis was also applied to analyse single stack and double stack cold
plates, the details of which may be found in Quadir et al. (2002 2003). It may be
mentioned here that they analysed first a single unit cell being considered as the
representative of the whole stack with no heat losses from the top and bottom surfaces
of the stack. The steady-state results obtained by them using the present analysis were
compared with those of Pieper and Kraus (1998) and found to be in good agreement.
Thus, the present methodology was validated against the single and double stack cold
plate results available in the literature.
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Triple stack cold plate
Since the present methodology is valid for analyzing single and double stack cold
plates, the same methodology is extended to a triple stack cold plate to analyse its
performance under the same boundary conditions. A single unit cell, being the
repeating segments of the triple stack, is considered first. The analysis of this single
unit cell is carried out under the same operating conditions as given by Pieper and
Kraus (1998) for single and double stack cold plates. Next, different NUC are
considered and analysed after having assembled them together vertically with and
without heat losses from the top and bottom of the assembled unit.

Single unit cell analysis
Figure 2(a) shows the geometry of a single unit cell of a triple stack cold plate. The
discretised single unit cell used for the finite element analysis is shown in Figure 2(b).
In this case, the global matrix is a 12£ 12 matrix as there are 11 elements and 12 nodes.
The same heat loadings on the left and right exterior plates are taken as in the case
of the analysis of a single unit cell in the single and double stack cold plates.

Figure 2.
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The steady-state results obtained for M ¼ 0:55 (same value as given by Pieper and
Kraus (1998)) are then plotted in Figure 3 in terms of ul and ur representing the
maximum temperature on the left and right exterior plate, respectively. Generally,
the pattern of the curves is similar to that of the single and double stack cold plates
(Quadir et al., 2002, 2003). In addition, temperature level of a triple stack cold plate is
the lowest among the single, double and triple stack cold plates for the same operating
conditions.

Analysis of stack with varying NUC
Analysis of the assembly of different NUC for a triple stack cold plate with and without
heat losses is presented as follows. For this, unit cells of a triple stack cold plate are
assembled in the vertical direction as shown in Figure 2(c) for five unit cells. Figure 2(d)
shows the discretisation of the assembled five unit cells. In order to see the effect of
varying NUC on the performance of the triple stack cold plate, several values of NUC
are employed during the analysis.

Figure 4 shows different curves of the steady-state temperature distribution at the
left exterior plate for M ¼ 0:55; NUC ¼ 1, 5, 20, 50 and 100 with heat loss from both
ends equals 0, 0.1 and 0.2 and ~Q ¼ 1: It is observed from Figure 4 that when there is no
heat loss from both the ends, the steady-state temperature distribution is uniform
throughout irrespective of the NUC as shown by the curves (HL0)1, (HL0)5, (HL0)20,
(HL0)50 and (HL0)100. In these notations, HL stands for heat loss; 0, 1 and 2 stand for
zero, 10 and 20 per cent heat loss; and the subscripts 1, 5, 20, 50 and 100 stand for the
number of unit cells being assembled together to form the stack. For the heat loss of
0.1, the maximum temperature ul obtained for NUC ¼ 1 drops as compared to the
earlier case (zero heat loss) as can be observed from the curve (HL1)1. For NUC ¼ 5 and
HL ¼ 0:1, Figure 4 shows that there is not much difference in ul as compared to that
obtained for NUC ¼ 1 and HL ¼ 0:1 (curves (HL1)1 and (HL1)5). When calculations are
carried out for an increased heat loss of 0.2, the trend observed is the same. When
NUC ¼ 20; the value of ul is higher than that obtained for NUC ¼ 1 or 5 when the
above two heat losses are considered. Similar behaviour is observed when NUC is
increased to 50. Figure 4 also shows clearly the symmetrical temperature profile and

Figure 3.
Dimensionless maximum
temperature variation on
the left and right exterior
plate against heat loading
from a single unit cell
analysis
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the lower temperatures at the ends, when the heat loss is considered, by the different
curves. However, the temperatures of the near middle cells obtained for NUC ¼ 100
and HL ¼ 0:1 and 0.2 are closer to those obtained for the case with no heat loss as can
be seen from the curves (HL1)100, (HL2)100, (HL0)1, (HL0)5, . . .(HL0)100. Furthermore, the
curves (HL1)100 and (HL2)100 representing the temperature variation along the left
exterior plate for two different heat losses are very close to each other near the middle
cells and differ only at other locations, as expected. Thus, for a triple stack cold plate, it
can be concluded that for large NUC (.100) and heat loss being considered, the
analysis of a single unit cell without heat loss is adequate to get the temperature
distribution near the middle cell or ul, which will be helpful to determine whether the
maximum temperature limit umax has been achieved or not. Similar curves for other
heat loadings may be drawn to show the steady-state temperature distribution at the
right exterior plate as well. The above analysis also shows that a single unit cell
analysis with heat loss does not represent the conditions of the middle cell of a stack
having any number of repeating segments of unit cell.

Figure 5 shows the steady-state temperature distribution of the right and left
exterior plates of the stack ðM ¼ 0:55Þ for two values of NUC (20 and 100) under three
different heat loadings ( ~Q ¼ 0:33; 1 and 2) for a fixed heat loss of 0.2. Based upon the
discussion of Figure 4, it may be mentioned here that all the results presented for
NUC ¼ 100 for any heat loading give the maximum temperature limit which the stack
under investigation will attain irrespective of the heat losses from the top and bottom
surfaces of the stack. It may be seen from Figure 5 that the temperature distribution
along the right exterior plate at fixed values of NUC and heat loss is the same as that on
the left exterior plate when ~Q ¼ 1: The temperature distribution for this equal heat
loading ð ~Q ¼ 1Þ for NUC ¼ 100 is clearly shown to be higher than that at NUC ¼ 20
for the same heat loading. When ~Q is less than 1, the left exterior plate has temperature
levels higher than those of right exterior plate for both NUCs as expected. Similarly,
when ~Q is greater than 1, the opposite behaviour in the temperature distribution on the
exterior plates is distinctly shown in Figure 5 for ~Q ¼ 2:

Figure 4.
Temperature distribution

at the left exterior plate for
various NUC, ~Q ¼ 1 and

different heat losses
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The steady-state temperature distributions along the horizontal fin of the middle unit
cell for different NUC and different heat loadings ~Q are shown in Figure 6 where
M ¼ 0:55 and heat loss ¼ 0:2: Results of the analysis of a single unit cell with zero
heat loss for all heat loadings considered are also shown in this figure. The temperature
distribution for ~Q ¼ 1 is clearly observed to be symmetric in Figure 6. When ~Q ¼ 0:33;
the temperatures at the right nodes are lower than those at the left nodes, which is
expected, and this trend is reversed for ~Q ¼ 2: It is also noticed that when ~Q ¼ 2; the
second node from the left exterior plate has the lowest temperature among the four
nodes along the horizontal fin. It is seen from Figure 6 that the temperature distribution
for any heat loading at higher NUC approaches that distribution that is obtained from
the analysis of a single unit cell without heat loss at that heat loading. This shows that
for NUC $ 100; the effect of heat loss does not affect the temperature of the cells at or
near the middle unit cell.

Figure 5.
Temperature distribution
at the left and right
exterior plate for different
~Q, heat loss ¼ 0:2 and
NUC ¼ 20 and 100

Figure 6.
Temperature distribution
along the horizontal fin at
the middle of the
assembled stack for
different heat loadings
with different NUC and
heat loss ¼ 0.2
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Next, a generalized behaviour of the triple stack cold plate is presented by analyzing it
for different values of M at different NUC and with and without heat losses from the
top and bottom surfaces of the assembled stack. The steady-state results are plotted in
terms of the maximum dimensionless temperature obtained either on the left or the
right exterior plate depending on the value of ~Q as shown in Figure 7 when the heat
loss ¼ 0:2: Calculations are also carried out for no heat loss and the results are plotted
in the same figure for the different heat loadings considered. Thus, Figure 7 shows a
generalized performance curve of a triple stack cold plate for ~Q ¼ 0:33; 1 and 2 with
heat loss ¼ 0 and 0.2. It is observed from this figure that the umax obtained for the heat
loading ~Q ¼ 2 and NUC ¼ 100 is highest amongst the values obtained for other heat
loadings for all the values of 0.25, M , 2. Furthermore, the difference between the
values of umax for different values of ~Q is quite large at lower values of M. However,
this difference reduces considerably for M . 0:5: It is also noticed from Figure 7 that
for ~Q ¼ 2 and NUC ¼ 50; umax values for M.1.0 coincide with those calculated for
zero heat loss as well as with those obtained with NUC ¼ 100 for that heat loading.
Similar observation is noticed from the lower curves for ~Q ¼ 1, but beyond a slightly
higher value of M as compared to that established for ~Q ¼ 2: This suggests that for
values of M . 1:5 and even with a heat loss of 0.2, the same results can be obtained
from the analysis of a single unit cell without heat loss when NUC exceeds 50.

Figure 8 shows the steady-state temperature distribution at the left and right
exterior plates for the heat loading ~Q ¼ 0:33 when the heat loss from the top of the
assembled unit ðNUC ¼ 20Þ is different from that of the bottom. Calculated results
shown in this figure consider a constant heat loss from the top as 0.2, while heat loss
from the bottom varies from 0 to 0.2. The symmetric temperature distribution about
the middle of the stack is clearly shown in Figure 8 when the heat losses at both the
ends are the same (i.e. 0.2, 0.2). Furthermore, the temperature drop at the top of the cold

Figure 7.
Dimensionless maximum

temperature variation
against M for different
NUC and for ~Q ¼ 0:33,

1 and 2
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plate is more than that at the bottom when the heat loss from the top is larger than that
from the bottom.

Comparison of FEM transient results with those from AWE scheme
All the above discussions made are in terms of the steady-state results. The transient
behaviour for various working conditions for the triple stack cold plate using the finite
element method and the fast transient AWE scheme is discussed below.

Figure 9 shows the comparison of the results obtained by FEM with those from
AWE, for the variation of the maximum temperature of the cold plate with respect to
time. In this figure the heat loading is unity, heat losses from the upper and lower
surfaces of the stack are neglected, and the number of unit cells considered is 100.
The three curves using AWE are produced using different number of moments (q) of 2,

Figure 8.
Temperature distribution
at the left and right
exterior plates for different
heat losses for ~Q ¼ 0:33
and NUC ¼ 20 and 100

Figure 9.
Comparison between FEM
and AWE results for
maximum temperature
variation for M ¼ 0:55;
loss ¼ 0; ~Q ¼ 1 and
NUC ¼ 100
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4 and 6, respectively. Figure 9 clearly shows that the results using AWE are almost
identical to the results using FEM. Slight differences between the two methods are
observed when the number of moments is 2. When the number of moments is 4 or 6, it
exactly coincides with the FEM solutions.

Figure 10 is a magnified version of Figure 9 for the initial stages of time represented
by t ¼ 0 2 1. This figure clearly demonstrates the differences between the curves using
AWE during the initial stages, especially for q ¼ 2:However, the difference gets smaller
as time progresses, and finally, the curve approaches other curves for higher number of
moments q ¼ 4 and 6. It can also be seen from this figure that the curves for q ¼ 4 and 6
are very close to the curve obtained by using FEM even during the initial stages of time.

Figure 11 shows the effect of the governing parameter M on the maximum
temperature of the stack while other parameter such as heat loading is still unity and
NUC ¼ 100: The results in this figure correspond to heat loss of 0.2. When M increases,
the maximum temperature decreases, as expected. But the time taken to reach the
steady-state reduces considerably. This is because a large value of M implies a high
value of heat transfer coefficient, which means more heat is transferred from the cold
plate to the coolant more quickly. Figure 11 also shows that the results using AWE are
close to the results using FEM.

Figure 12 shows the effect of non-uniform heat loadings on the maximum
temperature of the cold plate. The results in this figure are shown for a fixed value of M
(0.55) with no heat loss and NUC ¼ 100: It is obvious that when heat loading increases,
the maximum temperature also increases. It is also observed that the non-uniform heat
loading does not change the time taken to reach the steady-state. As before, results
using AWE are close to the results using FEM.

Figure 13 shows the comparison of the CPU time for AWE scheme and FEM to
solve the stack problem of M ¼ 0:55 for unit heat loading, when different NUC is
considered in the analysis. The data are obtained by running the simulation in a
Pentium IV 1.4 GHz computer. It can be seen from this figure that FEM needs more
time compared to the AWE scheme for all values of NUC. It is also obvious that AWE
is at least ten times faster than FEM.

Figure 10.
Magnification of Figure 9
to show the variation of u
in the early period of time

for different values of
moments q
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Conclusions
The finite element method is used to analyse a triple stack cold plate in steady and
transient conditions as well. A single one-dimensional fin theory is applied to the
discretised elements in the above analysis. First, a single unit cell of the stack is
analysed with and without heat losses from its top and bottom surfaces for different
heat loadings at the exterior plates. Next, the analysis is carried out for an assembly of
different NUC under the same boundary conditions as imposed for a single unit cell.
Furthermore, the results of the stack analysis for different values of M, a dimensionless
parameter involving dimension, properties of the stack material and h are also
presented which will be helpful in the design of cold plates used for the cooling of
electronic systems. The transient performance is further evaluated using the AWE

Figure 12.
Comparison between the
FEM and AWE results for
maximum temperature
variation under different
values of heat loadings for
loss ¼ 0 and NUC ¼ 100

Figure 11.
Comparison of FEM and
AWE results of maximum
temperature variation for
different values of M for
loss ¼ 0:2; ~Q ¼ 1 and
NUC ¼ 100
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method and the results thus obtained are compared with those by FEM. The following
conclusions are drawn.

(1) The single unit cell as the representative of the stack is only valid either if there
are no heat losses from the top and bottom surfaces of the stack or there are
more than 100 unit cells in the triple stack.

(2) New results for triple stack cold plates in terms of the steady-state maximum
temperature of the stack obtained under different heat loadings for various
values of M are presented. For higher values of M, NUC ¼ 50 is sufficient for
the analysis to get the maximum temperature.

(3) New results for the triple stack cold plate in terms of the steady-state
temperature distribution along the left and right exterior plates for heat losses
from the top surface being different from the bottom surface for a particular
heat loading and a particular value of M are also presented. The trends obtained
are expected.

(4) The time taken to reach the steady-state is shorter as the heat losses at the top
and bottom surface increase. Also, as the heat loading increases, the time taken
to reach the steady-state is longer. Similar trend is observed as the NUC
increases. However, as M increases, the time taken to reach the steady-state
reduces considerably.

(5) There is a good agreement between the transient results obtained by the fast
transient AWE method and the finite element method applied to the triple stack
with different operating conditions. However, the time taken to analyse the
transient performance by AWE scheme is considerably shorter.
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